Orbital Stability of KdV Multisolitons in $$H^{-1}$$
نویسندگان
چکیده
We prove that multisoliton solutions of the Korteweg–de Vries equation are orbitally stable in \(H^{-1}(\mathbb {R})\). introduce a variational characterization multisolitons remains meaningful at such low regularity and show all optimizing sequences converge to manifold multisolitons. The proximity required initial time is uniform across entire multisolitons; this had not been demonstrated previously, even \(H^1\).
منابع مشابه
Asymptotic Stability for Kdv Solitons in Weighted H Spaces
In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentiallyweighted norms. Using a combination of the I-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restricti...
متن کاملStability of Solitons for the KdV equation in H s , 0 ≤ s < 1 Preliminary
We study the long-time stability of soliton solutions to the Korteweg-deVries equation. We consider solutions u to the KdV with initial data in Hs, 0 ≤ s < 1, that are initially close in Hs norm to a soliton. We prove that the possible orbital instability of these ground states is at most polynomial in time. This is an analogue to the Hs orbital instability result of [7], and obtains the same m...
متن کاملOn the orbital stability of Gaussian solitary waves in the log-KdV equation
We consider the logarithmic Korteweg–de Vries (log–KdV) equation, which models solitary waves in anharmonic chains with Hertzian interaction forces. By using an approximating sequence of global solutions of the regularized generalized KdV equation in H(R) with conserved L norm and energy, we construct a weak global solution of the log–KdV equation in a subset of H(R). This construction yields c...
متن کاملStability of Small Periodic Waves in Fractional KdV-Type Equations
We consider the effects of varying dispersion and nonlinearity on the stability of periodic traveling wave solutions of nonlinear PDEs of KdV type, including generalized KdV and Benjamin–Ono equations. In this investigation, we consider the spectral stability of such solutions that arise as small perturbations of an equilibrium state. A key feature of our analysis is the development of a nonloc...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-04280-y